Reactive Scala Driver for MongoDB

Asynchronous & Non-Blocking

Aggregation Framework

The MongoDB Aggregation Framework is available through ReactiveMongo.

Zip codes example

Considering there is a zipcodes collection in a MongoDB, with the following documents.

[
  { '_id': "10280", 'city': "NEW YORK", 'state': "NY",
    'population': 19746227, 'location': {'lon':-74.016323, 'lat':40.710537} },
  { '_id': "72000", 'city': "LE MANS", 'state': "FR", 
    'population': 148169, 'location': {'long':48.0077, 'lat':0.1984}},
  { '_id': "JP-13", 'city': "TOKYO", 'state': "JP", 
    'population': 13185502L, 'location': {'lon':35.683333, 'lat':139.683333} },
  { '_id': "AO", 'city': "AOGASHIMA", 'state': "JP",
    'population': 200, 'location': {'lon':32.457, 'lat':139.767} }
]

Distinct state

The distinct command is available to find the distinct values for a specified field across a single collection.

In the MongoDB shell, such command can be used to find the distinct states from the zipcodes collection, with results "NY", "FR", and "JP".

db.runCommand({ distinct: "state" })

Using the ReactiveMongo API, it can be done with the corresponding collection operation.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson.BSONDocument
import reactivemongo.api.collections.bson.BSONCollection

def distinctStates(col: BSONCollection)(implicit ec: ExecutionContext): Future[Set[String]] = col.distinct[String, Set]("state")

States with population above 10000000

It’s possible to determine the states for which the sum of the population of their cities is above 10000000, by grouping the documents by their state, then for each group calculating the sum of the population values, and finally get only the grouped documents whose population sum matches the filter “above 10000000”.

In the MongoDB shell, such aggregation is written as bellow (see the example).

db.zipcodes.aggregate([
   { $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
   { $match: { totalPop: { $gte: 10000000 } } }
])

With ReactiveMongo, it can be done using the .aggregate operation.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.{ BSONDocument, BSONString }
import reactivemongo.api.collections.bson.BSONCollection

def populatedStates(col: BSONCollection): Future[List[BSONDocument]] = {
  import col.BatchCommands.AggregationFramework.{
    AggregationResult, Group, Match, SumField
  }

  val res: Future[AggregationResult] = col.aggregate(
    Group(BSONString("$state"))( "totalPop" -> SumField("population")),
    List(Match(BSONDocument("totalPop" -> BSONDocument("$gte" -> 10000000L)))))

  res.map(_.documents)
}

The local import col.BatchCommands.AggregationFramework._ is required, and cannot be replaced by a global static import reactivemongo.api.collections.BSONCollection.BatchCommands.AggregationFramework._. The type .BatchCommands.AggregationFramework.AggregationResult is a dependent one, used for the intermediary/MongoDB result, and must not be exposed as public return type in your application/API.

Then when calling populatedStates(theZipCodeCol), the asynchronous result will be as bellow.

[
  { "_id" -> "JP", "totalPop" -> 13185702 },
  { "_id" -> "NY", "totalPop" -> 19746227 }
]

Note that for the state “JP”, the population of Aogashima (200) and of Tokyo (13185502) have been summed.

As for the other commands in ReactiveMongo, it’s possible to return the aggregation result as custom types (see BSON readers), rather than generic documents, for example considering a class State as bellow.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.Macros
import reactivemongo.api.collections.bson.BSONCollection

case class State(name: String, population: Long)

implicit val reader = Macros.reader[State]

def aggregate(col: BSONCollection): Future[col.BatchCommands.AggregationFramework.AggregationResult] = ???

def states(col: BSONCollection): Future[List[State]] =
  aggregate(col).map(_.result[State])

Using cursor:

The alternative .aggregateWith builder can be used, to process the aggregation result with a Cursor.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.Cursor
import reactivemongo.api.collections.bson.BSONCollection

def populatedStatesCursor(cities: BSONCollection)(implicit ec: ExecutionContext): Cursor[BSONDocument] =
  cities.aggregateWith[BSONDocument]() { framework =>
    import framework.{ Group, Match, SumField }

    Group(BSONString("$state"))("totalPop" -> SumField("population")) -> List(
      Match(document("totalPop" -> document("$gte" -> 10000000L)))
    )
  }

The GroupField operator can be used instead of the Group one, to simply work with a single field.

In the previous example the dependent import myCol.BatchCommands.AggregationFramework._ are replaced by a simpler import using the instance of the aggregation framework provided by the builder: import framework.{ Group, Match, SumField }

Most populated city per state

The $max can be used to get the most populated site per state.

In the MongoDB shell, it would be executed as following.

db.zipcodes.aggregate([
   { $group: { _id: "$state", maxPop: { $max: "$population" } } }
])

It will return a result as bellow.

[
  { _id: "JP", maxPop: 13185502 },
  { _id: "FR", maxPop: 148169 }
  { _id: "NY", maxPop: 19746227 }
]

Using ReactiveMongo:

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def mostPopulated(cities: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework
  import AggregationFramework.{ Group, MaxField }

  cities.aggregate(Group(BSONString("$state"))(
    "maxPop" -> MaxField("population")
  )).map(_.firstBatch)
}

Similarly, the $min accumulator can be used to get the least populated cities.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def leastPopulated(cities: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework
  import AggregationFramework.{ Group, MinField }

  cities.aggregate(Group(BSONString("$state"))(
    "minPop" -> MinField("population")
  )).map(_.firstBatch)
}

The Min and the Max operators can be used instead of MinField and MaxField, to use expressions in place of single fields.

Gather the city names per state as a simple array

The $push accumulator can be used to gather some fields, so there is a computed array for each group.

In the MongoDB shell, it can be done as bellow.

db.zipcodes.aggregate([
  { $group: { _id: "$state", cities: { $push: "$city" } } }
])

It will return the aggregation results:

[
  { _id: "JP", cities: [ "TOKYO", "AOGASHIMA" ] },
  { _id: "FR", cities: [ "LE MANS" ] },
  { _id: "NY", cities: [ "NEW YORK" ] }
}
import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def citiesPerState1(cities: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework.{ Group, PushField }

  cities.aggregate(Group(BSONString("$state"))(
    "cities" -> PushField("city"))).map(_.firstBatch)
}

Similarly the $addToSet accumulator can be applied to collect all the unique values in the array for each group (there it’s equivalent to $push).

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def citiesPerState1(cities: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework.{ Group, AddFieldToSet }

  cities.aggregate(Group(BSONString("$state"))(
    "cities" -> AddFieldToSet("city"))).map(_.firstBatch)
}

The AddToSet and the Push operators can be used instead of AddFieldToSet and PushField, to use expressions in place of single fields.

Average city population by state

The accumulator $avg can be used to find the average population of the cities by state.

In the MongoDB shell, it can be done as following.

db.zipcodes.aggregate([
   { $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
   { $group: { _id: "$_id.state", avgCityPop: { $avg: "$pop" } } }
])
  1. Group the documents by the combination of city and state, to get intermediate documents of the form { "_id" : { "state" : "NY", "city" : "NEW YORK" }, "pop" : 19746227 }.
  2. Group the intermediate documents by the _id.state field (i.e. the state field inside the _id document), and get the average of population of each group ($avg: "$pop").

Using ReactiveMongo, it can be written as bellow.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson.{ BSONDocument, BSONString }
import reactivemongo.api.collections.bson.BSONCollection

def avgPopByState(col: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import col.BatchCommands.AggregationFramework.{
    AggregationResult, AvgField, Group, SumField
  }

  col.aggregate(Group(BSONDocument("state" -> "$state", "city" -> "$city"))(
    "pop" -> SumField("population")),
    List(Group(BSONString("$_id.state"))("avgCityPop" -> AvgField("pop")))).
    map(_.documents)
}

The Avg operator can be used instead of AvgField, to use an expression in place of a single field.

Largest and smallest cities by state

Aggregating the documents can be used to find the largest and the smallest cities for each state:

db.zipcodes.aggregate([
   { $group:
      {
        _id: { state: "$state", city: "$city" },
        pop: { $sum: "$pop" }
      }
   },
   { $sort: { pop: 1 } },
   { $group:
      {
        _id : "$_id.state",
        biggestCity:  { $last: "$_id.city" },
        biggestPop:   { $last: "$pop" },
        smallestCity: { $first: "$_id.city" },
        smallestPop:  { $first: "$pop" }
      }
   },

  // the following $project is optional, and
  // modifies the output format.

  { $project:
    { _id: 0,
      state: "$_id",
      biggestCity:  { name: "$biggestCity",  pop: "$biggestPop" },
      smallestCity: { name: "$smallestCity", pop: "$smallestPop" }
    }
  }
])

A ReactiveMongo function can be written as bellow.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.{ BSONDocument, BSONString, Macros }
import reactivemongo.api.collections.bson.BSONCollection

case class City(name: String, population: Long)

object City {
  implicit val reader = Macros.reader[City]
}

case class StateStats(state: String, biggestCity: City, smallestCity: City)

object StateStats {
  implicit val reader = Macros.reader[StateStats]
}

def stateStats(col: BSONCollection): Future[List[StateStats]] = {
  import col.BatchCommands.AggregationFramework.{
    AggregationResult, Ascending, FirstField, Group, LastField,
    Project, Sort, SumField
  }

  col.aggregate(Group(BSONDocument("state" -> "$state", "city" -> "$city"))(
    "pop" -> SumField("population")),
    List(Sort(Ascending("population")), Group(BSONString("$_id.state"))(
        "biggestCity" -> LastField("_id.city"),
        "biggestPop" -> LastField("pop"),
        "smallestCity" -> FirstField("_id.city"),
        "smallestPop" -> FirstField("pop")),
      Project(BSONDocument("_id" -> 0, "state" -> "$_id",
        "biggestCity" -> BSONDocument("name" -> "$biggestCity",
          "population" -> "$biggestPop"),
        "smallestCity" -> BSONDocument("name" -> "$smallestCity",
          "population" -> "$smallestPop"))))).
  map(_.result[StateStats])
}

This function would return statistics like the following.

List(
  StateStats(state = "NY",
    biggestCity = City(name = "NEW YORK", population = 19746227L),
    smallestCity = City(name = "NEW YORK", population = 19746227L)),
  StateStats(state = "FR",
    biggestCity = City(name = "LE MANS", population = 148169L),
    smallestCity = City(name = "LE MANS", population = 148169L)),
  StateStats(state = "JP",
    biggestCity = City(name = "TOKYO", population = 13185502L),
    smallestCity = City(name = "AOGASHIMA", population = 200L)))

The First and the Last operators can be used instead of FirstField and LastField, to use expressions in place of single fields.

The $limit or the $skip stages can be used to consider only some states:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def paginatedStats(col: BSONCollection, max: Int, offset: Int = 0): Future[List[StateStats]] = {
  import col.BatchCommands.AggregationFramework.{
    AggregationResult, Ascending, FirstField, Group, LastField, Limit,
    Project, Skip, Sort, SumField
  }

  col.aggregate(Group(BSONDocument("state" -> "$state", "city" -> "$city"))(
    "pop" -> SumField("population")),
    List(
      Skip(offset), // <-- skip some states if offset > 0
      Limit(max), // <-- limit the state groups
      Sort(Ascending("population")), 
      Group(BSONString("$_id.state"))(
        "biggestCity" -> LastField("_id.city"),
        "biggestPop" -> LastField("pop"),
        "smallestCity" -> FirstField("_id.city"),
        "smallestPop" -> FirstField("pop")),
      Project(BSONDocument("_id" -> 0, "state" -> "$_id",
        "biggestCity" -> BSONDocument("name" -> "$biggestCity",
          "population" -> "$biggestPop"),
        "smallestCity" -> BSONDocument("name" -> "$smallestCity",
          "population" -> "$smallestPop"))))).
  map(_.result[StateStats])
}

Standard deviation of the japanese cities

The group accumulators $stdDevPop and $stdDevSamp can be used to find the standard deviation of the japanese cities.

In the MongoDB, it can be done as following.

db.zipcodes.aggregate([
   { $group:
      {
        _id: "$state",
        popDev: { $stdDevPop: "$population" }
      }
   },
   { $match: { _id: "JP" } }
])

It will find the result:

{ _id: "JP", popDev: 6592651 }

It can be done with ReactiveMongo as bellow.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def populationStdDeviation(cities: BSONCollection)(implicit ec: ExecutionContext): Future[Option[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework
  import AggregationFramework.{ StdDevPopField, Group, Match }

  cities.aggregate(Group(BSONString("$state"))(
    "popDev" -> StdDevPopField("population")),
    List(Match(document("_id" -> "JP")))).map(_.firstBatch.headOption)
}

def populationSampleDeviation(cities: BSONCollection)(implicit ec: ExecutionContext): Future[Option[BSONDocument]] = {
  import cities.BatchCommands.AggregationFramework
  import AggregationFramework.{ StdDevSampField, Group, Match }

  cities.aggregate(Group(BSONString("$state"))(
    "popDev" -> StdDevSampField("population")),
    List(Match(document("_id" -> "JP")))).map(_.firstBatch.headOption)
}

The StdDevPop and the StdDevSamp operators can be used instead of StdDevPopField and StdDevSampField, to use expressions in place of single fields.

Find documents using text indexing

Consider the following text indexes is maintained for the fields city and state of the zipcodes collection.

db.zipcodes.ensureIndex({ city: "text", state: "text" })

Then it’s possible to find documents using the $text operator, and also the results can be sorted according the text scores.

For example to find the documents matching the text "JP", and sort according the text score, the following query can be executed in the MongoDB shell.

db.users.aggregate([
   { $match: { $text: { $search: "JP" } } },
   { $sort: { score: { $meta: "textScore" } } }
])

A ReactiveMongo function can be written as bellow.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.BSONDocument
import reactivemongo.api.collections.bson.BSONCollection

def textFind(coll: BSONCollection): Future[List[BSONDocument]] = {
  import coll.BatchCommands.AggregationFramework
  import AggregationFramework.{
    Cursor,
    Match,
    MetadataSort,
    Sort,
    TextScore
  }

  val firstOp = Match(BSONDocument(
    "$text" -> BSONDocument("$search" -> "JP")))

  val pipeline = List(Sort(MetadataSort("score", TextScore)))

  coll.aggregate1[BSONDocument](firstOp, pipeline).collect[List]()
}

This will return the sorted documents for the cities TOKYO and AOGASHIMA.

Random sample

The $sample aggregation stage can be used (since MongoDB 3.2), in order to randomly selects documents.

In the MongoDB shell, it can be used as following to fetch a sample of 3 random documents.

db.zipcodes.aggregate([
  { $sample: { size: 3 } }
])

With ReactiveMongo, the $sample operator can be used as follows.

import scala.concurrent.{ ExecutionContext, Future }
import reactivemongo.bson.BSONDocument
import reactivemongo.api.collections.bson.BSONCollection

def randomZipCodes(coll: BSONCollection)(implicit ec: ExecutionContext): Future[List[BSONDocument]] = {
  import coll.BatchCommands.AggregationFramework

  coll.aggregate(AggregationFramework.Sample(3)).map(_.head[BSONDocument])
}

Places examples

Let consider a collection of different kinds of place (e.g. Central Park …), with their locations indexed using 2dsphere.

This can be setup with the MongoDB shell as follows.

db.place.createIndex({'loc':"2dsphere"});

db.place.insert({
  "type": "public",
  "loc": {
    "type": "Point", "coordinates": [-73.97, 40.77]
  },
  "name": "Central Park",
  "category": "Parks"
});
db.place.insert({
  "type": "public",
  "loc": {
    "type": "Point", "coordinates": [-73.88, 40.78]
  },
  "name": "La Guardia Airport",
  "category": "Airport"
});

The $geoNear aggregation can be used on the collection, to find the place near the geospatial coordinates [ -73.9667, 40.78 ], within 1 km (1000 meters) and 5 km (5000 meters)

db.places.aggregate([{
  $geoNear: {
    near: { type: "Point", coordinates: [ -73.9667, 40.78 ] },
    distanceField: "dist.calculated",
    minDistance: 1000,
    maxDistance: 5000,
    query: { type: "public" },
    includeLocs: "dist.location",
    num: 5,
    spherical: true
  }
}])

The results will be of the following form:

{
  "type": "public",
  "loc": {
    "type": "Point",
    "coordinates": [ -73.97, 40.77 ]
  },
  "name": "Central Park",
  "category": "Parks",
  "dist": {
    "calculated": 1147.4220523120696,
    "loc": {
      "type": "Point",
      "coordinates": [ -73.97, 40.77 ]
    }
  }
}

It can be done with ReactiveMongo as follows.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson.{ array, document, Macros }
import reactivemongo.api.collections.bson.BSONCollection

case class GeoPoint(coordinates: List[Double])
case class GeoDistance(calculated: Double, loc: GeoPoint)

case class GeoPlace(
  loc: GeoPoint,
  name: String,
  category: String,
  dist: GeoDistance
)

object GeoPlace {
  implicit val pointReader = Macros.reader[GeoPoint]
  implicit val distanceReader = Macros.reader[GeoDistance]
  implicit val placeReader = Macros.reader[GeoPlace]
}

def placeArround(places: BSONCollection)(implicit ec: ExecutionContext): Future[List[GeoPlace]] = {
  import places.BatchCommands.AggregationFramework.GeoNear

  places.aggregate(GeoNear(document(
    "type" -> "Point",
    "coordinates" -> array(-73.9667, 40.78)
  ), distanceField = Some("dist.calculated"),
    minDistance = Some(1000),
    maxDistance = Some(5000),
    query = Some(document("type" -> "public")),
    includeLocs = Some("dist.loc"),
    limit = 5,
    spherical = true)).map(_.head[GeoPlace])
}

Forecast example

Consider a collection of forecasts with the following document.

{
  _id: 1,
  title: "123 Department Report",
  tags: [ "G", "STLW" ],
  year: 2014,
  subsections: [
    {
      subtitle: "Section 1: Overview",
      tags: [ "SI", "G" ],
      content:  "Section 1: This is the content of section 1."
    },
    {
      subtitle: "Section 2: Analysis",
      tags: [ "STLW" ],
      content: "Section 2: This is the content of section 2."
    },
    {
      subtitle: "Section 3: Budgeting",
      tags: [ "TK" ],
      content: {
        text: "Section 3: This is the content of section3.",
        tags: [ "HCS" ]
      }
    }
  ]
}

Using the $redact stage, the MongoDB aggregation can be used to restricts the contents of the documents. It can be done in the MongoDB shell as follows:

db.forecasts.aggregate([
  { $match: { year: 2014 } },
  { 
    $redact: {
      $cond: {
        if: { $gt: [ { $size: { 
          $setIntersection: [ "$tags", [ "STLW", "G" ] ] } }, 0 ]
        },
        then: "$$DESCEND",
        else: "$$PRUNE"
      }
    }
  }
])

The corresponding results a redacted document.

{
  "_id" : 1,
  "title" : "123 Department Report",
  "tags" : [ "G", "STLW" ],
  "year" : 2014,
  "subsections" : [
    {
      "subtitle" : "Section 1: Overview",
      "tags" : [ "SI", "G" ],
      "content" : "Section 1: This is the content of section 1."
    },
    {
      "subtitle" : "Section 2: Analysis",
      "tags" : [ "STLW" ],
      "content" : "Section 2: This is the content of section 2."
    }
  ]
}

With ReactiveMongo, the aggregation framework can perform a similar redaction.

import scala.concurrent.{ ExecutionContext, Future }

import reactivemongo.bson._
import reactivemongo.api.collections.bson.BSONCollection

def redactForecasts(forecasts: BSONCollection)(implicit ec: ExecutionContext) = {
  import forecasts.BatchCommands.AggregationFramework.{ Match, Redact }

  forecasts.aggregate(Match(document("year" -> 2014)), List(
    Redact(document("$cond" -> document(
      "if" -> document(
        "$gt" -> array(document(
          "$size" -> document("$setIntersection" -> array(
            "$tags", array("STLW", "G")
          ))
        ), 0)
      ),
      "then" -> "$$DESCEND",
      "else" -> "$$PRUNE"
    ))))).map(_.head[BSONDocument])
}

Inventory example

Consider an inventory collection, with the following document.

{ "_id" : 1, "item" : "ABC1", "sizes": [ "S", "M", "L"] }

The $unwind stage can be used as bellow in the MongoDB shell, to return a document for each size.

db.inventory.aggregate( [ { $unwind : "$sizes" } ] )

It will return results as bellow.

{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

With ReactiveMongo, it can be done using Unwind.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.api.collections.bson.BSONCollection

def sized(inventory: BSONCollection) = {
  import inventory.BatchCommands.AggregationFramework.UnwindField

  inventory.aggregate(UnwindField("sizes")).map(_.firstBatch)
}

If there is a second price collection, with the following document.

{ "_id" : 10, "item" : "ABC1", "price" : 12.34 }

This can be joined using the MongoDB shell, with the $lookup stage.

db.inventory.aggregate([{
  $lookup: {
    from: "prices",
    localField: "item",
    foreignField: "item",
    as: "prices"
  }
}])

It will result in the document thereafter.

{
  "_id" : 1,
  "item" : "ABC1",
  "sizes": [ "S", "M", "L" ],
  "prices": [
    { "_id" : 10, "item" : "ABC1", "price" : 12.34 }
  ]
}

It can be done with ReactiveMongo using the Lookup operator.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.BSONString
import reactivemongo.api.collections.bson.BSONCollection

def priced(inventory: BSONCollection, prices: BSONCollection) = {
  import prices.BatchCommands.AggregationFramework.Lookup

  prices.aggregate(
    Lookup(inventory.name, "item", "item", "prices")
  ).map(_.firstBatch)
}

Book library example

Consider a collection books that contains the following documents.

{ "_id" : 8751, "title" : "The Banquet", "author" : "Dante", "copies" : 2 }
{ "_id" : 8752, "title" : "Divine Comedy", "author" : "Dante", "copies" : 1 }
{ "_id" : 8645, "title" : "Eclogues", "author" : "Dante", "copies" : 2 }
{ "_id" : 7000, "title" : "The Odyssey", "author" : "Homer", "copies" : 10 }
{ "_id" : 7020, "title" : "Iliad", "author" : "Homer", "copies" : 10 }

Then its documents can be aggregated and outputted to another collection, using the $out stage.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.bson.BSONString
import reactivemongo.api.collections.bson.BSONCollection

def outputBooks(books: BSONCollection, outColl: String): Future[Unit] = {
  import books.BatchCommands.AggregationFramework
  import AggregationFramework.{ Ascending, Group, PushField, Out, Sort }

  books.aggregate(Sort(Ascending("title")), List(
    Group(BSONString("$author"))("books" -> PushField("title")),
    Out(outColl))).map(_ => {})
}

For the current example, the result collection will contain the following documents.

{ "_id" : "Homer", "books" : [ "Iliad", "The Odyssey" ] }
{ "_id" : "Dante", "books" : [ "Divine Comedy", "Eclogues", "The Banquet" ] }

Database indexes aggregation

The $indexStats stage returns statistics regarding the use of each index for a collection.

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

import reactivemongo.api.collections.bson.BSONCollection

def aggregateIndexes(coll: BSONCollection) = {
  import coll.BatchCommands.AggregationFramework.{ Ascending, IndexStats, Sort }
  import reactivemongo.api.commands.{ bson => bsoncommands }
  import bsoncommands.BSONAggregationFramework.{
    IndexStatsResult, IndexStatAccesses
  }
  import bsoncommands.BSONAggregationResultImplicits.BSONIndexStatsReader

  val result: Future[List[IndexStatsResult]] =
    coll.aggregate(IndexStats, List(Sort(Ascending("name")))).
    map(_.head[IndexStatsResult])

  result
}

See also: